Fast Sparse Representation based on Smoothed Norm
نویسندگان
چکیده
In this paper, a new algorithm for Sparse Component Analysis (SCA) or atomic decomposition on over-complete dictionaries is presented. The algorithm is essentially a method for obtaining sufficiently sparse solutions of underdetermined systems of linear equations. The solution obtained by the proposed algorithm is compared with the minimum -norm solution achieved by Linear Programming (LP). It is experimentally shown that the proposed algorithm is about two to three orders of magnitude faster than the state-of-the-art interior-point LP solvers, while providing the same (or better) accuracy.
منابع مشابه
Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-comp...
متن کاملComplex-valued Sparse Representation Based on Smoothed Norm
In this paper we present an algorithm for complex-valued sparse representation. In our previous work we presented an algorithm for Sparse representation based on smoothed norm. Here we extend that algorithm to complex-valued signals. The proposed algorithm is compared to FOCUSS algorithm and it is experimentally shown that the proposed algorithm is about two or three orders of magnitude faster ...
متن کاملComplex-valued sparse representation based on smoothed l0 norm
In this paper we present an algorithm for complex-valued sparse representation. In our previous work we presented an algorithm for Sparse representation based on smoothed norm. Here we extend that algorithm to complex-valued signals. The proposed algorithm is compared to FOCUSS algorithm and it is experimentally shown that the proposed algorithm is about two or three orders of magnitude faster ...
متن کاملFast Sparse Representation Based on Smoothed l0 Norm
In this paper, a new algorithm for Sparse Component Analysis (SCA) or atomic decomposition on over-complete dictionaries is presented. The algorithm is essentially a method for obtaining sufficiently sparse solutions of underdetermined systems of linear equations. The solution obtained by the proposed algorithm is compared with the minimum `-norm solution achieved by Linear Programming (LP). It...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کامل